固態聚合物電解質的界面問題

時間:2020-11-18 11:11來源:鋰電前沿 作者:秋白
點擊:
       固態聚合物電解質與傳統的液態電解質相比具有更高的熱穩定性,并且比陶瓷電解質更易于實現規模化制造,因此,是下一代儲能體系的研究熱點。然而,研究表明,固態聚合物電解質與其他電池組件之間的界面不穩定性阻礙了其實際應用。近日,美國哥倫比亞大學的楊遠教授和加拿大韋仕敦大學的孫學良教授回顧了近年來固態聚合物電解質/電極界面不穩定性方面的研究進展,并對如何進一步理解和解決這些問題提出了一些看法。相關論文以題為“Mitigating Interfacial Instability in Polymer Electrolyte-based Solid-State Lithium Metal Batteries with 4V Cathodes”于9月14日發表在ACS Energy Letters。
 
研究背景
 
       能量密度和安全性的提高對于開發用于各種設備的下一代可充電池至關重要。但是,能量密度較高的電池容易出現熱失控現象,危及安全性。使用熱穩定性更高的固態電解質取代易燃液態電解質是一種較好的方法。
 
       固態電解質主要有兩種類型:陶瓷電解質和固態聚合物電解質(SPEs)。陶瓷電解質的離子導電性通常遠高于聚合物電解質,然而,它們在規;圃、減薄厚度、大界面阻抗和優化操作壓力方面遇到了重大挑戰。此外,SPEs與當前基于流延的電池制造工藝兼容。
 
       SPEs的兩個主要挑戰是室溫下的低離子電導率和與其他電池組分的界面不穩定性。近年來,人們在提高SPEs的導電性方面取得了很大的進展,但界面穩定性問題尚未引起足夠的重視,然而,它代表了固態聚合物電池實際應用的關鍵挑戰。
 
       聚合物電解質/電極界面存在各種類型的降解機制,包括化學降解、電化學降解和機械降解。這種不穩定性不僅影響電解質相,而且影響固態電極本身。此外,在聚合物/陶瓷復合電解質中,聚合物/陶瓷界面也可能隨時間而降解。針對不同界面存在的不同問題,研究者按順序從聚合物/正極界面、聚合物/負極界面和聚合物/陶瓷電解質界面,回顧了最近的研究進展,并對下一步的研究方向進行了展望,以加速對這些界面的理解和固態聚合物電解質基固態電池的實際應用。
 
圖文導讀
 
       要點1:正極/SPEs界面的降解機理
 
       因為PEO已被廣泛研究,并已在3V Li/LiFePO4(LFP)電池中實現商業化,有可能在未來實現實用的4V固態電池,因此在本節中主要討論了PEO/4V正極界面的降解機理。
 
       PEOPEO/4V正極界面的不穩定性主要源于PEO的氧化。近年來,人們對PEO氧化機理的研究表明,其氧化過程被認為是PEO的脫氫反應,生成強酸HTFSI,HTFSI不僅能攻擊鋰金屬,產生H2,而且能加速PEO的分解。另一方面,PEO氧化也會破壞固相。除了PEO和正極材料的化學/電化學穩定性外,固態PEO與正極之間的物理接觸也很重要。循環時正極粒子的體積變化可導致其從PEO電解質中分層(圖1f和g)。
圖1正極/SPEs界面的降解機制
 
       要點2:減輕正極/SPEs界面不穩定性的策略
 
       如上所述,該界面的不穩定性主要由聚合物相的氧化引起。因此,抑制聚合物氧化將是解決這一挑戰的有效途徑,主要包括三個方面:1)在正極表面惰性涂層;2)調整電解質電子結構;3)減少界面間機械分層。
圖2 減輕正極/SPEs界面不穩定性的策略
 
       要點3:鋰負極/SPEs界面的降解機理
 
       由于聚合物基電解質在循環過程中容易與鋰金屬發生化學反應,因此導致鋰負極/SPEs界面的降解。此外,鋰/聚合物界面的另一個重大挑戰是其機械脆弱性。由于聚合物電解質的剪切模量通常遠小于阻止枝晶生長的臨界值(1-10 GPa),在反復循環中不可控的枝晶生長和剝離將導致死鋰的形成,并促進聚合物電解質與鋰負極之間的副反應。
 
       要點4:減緩鋰負極/SPEs界面問題的策略
 
       近年來,人們探索了各種策略來提高鋰金屬與SPEs之間的穩定性。一般的方法包括:1)減少接觸面積;2)形成高質量的SEI層以提高化學穩定性;3)添加陶瓷填料以提高機械穩定性。
圖3 鋰負極/SPEs界面的降解機理及對策
 
       要點5:復合電解質中的聚合物/陶瓷界面
 
       聚合物/陶瓷復合電解質可有效地提高聚合物電解質的離子電導率,抑制鋰枝晶的生長。
 
       最近,Riphaus等人研究了PEO與Li10SnP2S12(LSPS)之間的界面。他們認為PEO和LSPS之間的化學反應導致復合電解液的阻抗增大。另外他們還認為PEO末端的-OH基團促進了LSP分解形成亞硫酸鹽(圖4b)。
 
       此外,石榴石LLZO粒子能與空氣中的CO2反應,形成Li2CO3鈍化層,這種具有超低離子導電率的鈍化層阻礙了PEO和Ta摻雜的LLZO(LLZTO)之間的離子傳輸。
圖4 復合電解質中聚合物和陶瓷相之間的界面問題
 
總結展望
 
       綜上所述,人們一直致力于提高聚合物電解質和電極/填料之間的界面穩定性。目前材料工程的發展趨勢包括:1)開發新的涂層材料和表面摻雜,以抑制正極氧化,形成高質量的CEI層;2)調節鋰/電解質界面的機械化學響應,實現可逆、平滑的鋰沉積,例如通過添加不同形狀和不同力學性能的填料,以及通過SEI層改性;3)控制陶瓷填料/聚合物界面的化學成分,穩定界面離子傳輸。
 
       但是,目前對聚合物/電極界面和聚合物/陶瓷電解質界面的基本認識還很有限。為了應對這一挑戰,需要更多的特征描述,尤其是研究。對鋰枝晶生長的深入研究將為如何減輕負極側的界面不穩定性提供更多的見解。低溫電鏡(電子顯微鏡)是一種研究這種界面的有前途的方法,它不受后處理的干擾。此外,模擬是另一個有效的方式,可以規避實驗中的挑戰,幫助更好地理解上述界面的不穩定性。
 
       通過先進的實驗研究和模型研究相結合,將對聚合物電解質基固態電池界面穩定性有新的基本認識,從而加速其在商業市場上的應用,實現高能量密度的安全儲能。
 
(責任編輯:子蕊)
文章標簽: 電池 電解質 固態聚合物
免責聲明:本文僅代表作者個人觀點,與中國電池聯盟無關。其原創性以及文中陳述文字和內容未經本網證實,對本文以及其中全部或者部分內容、文字的真實性、完整性、及時性本站不作任何保證或承諾,請讀者僅作參考,并請自行核實相關內容。
凡本網注明 “來源:XXX(非中國電池聯盟)”的作品,均轉載自其它媒體,轉載目的在于傳遞更多信息,并不代表本網贊同其觀點和對其真實性負責。
如因作品內容、版權和其它問題需要同本網聯系的,請在一周內進行,以便我們及時處理。
QQ:503204601
郵箱:cbcu@m.69gh.com
猜你喜歡
專題
相關新聞
本月熱點
歡迎投稿
聯系人:王女士
Email:cbcu#m.69gh.com
發送郵件時用@替換#
電話:010-56284224
在線投稿
微信公眾號
主站蜘蛛池模板: 400部国产真实乱| 国产成人午夜福利在线观看视频| 国产日产久久高清欧美一区| 免费网站无遮挡| 一级一级特黄女人精品毛片视频| 老司机67194免费观看| 波多野结衣办公室jian情| 日本久久久久亚洲中字幕| 国产天堂亚洲精品| 亚洲国产激情一区二区三区| z0z0z0另类极品| 蜜桃AV无码免费看永久| 欧美熟妇另类久久久久久多毛| 性欧美16sex性高清播放| 国产日韩在线视频| 久久综合九色综合欧美就去吻| va亚洲va欧美va国产综合| 男男GayGays熟睡入侵视频| 奇米色在线视频| 亚洲精品乱码久久久久久蜜桃不卡| 中文字幕在线日韩| 黄页网址大全免费观看35| 日韩AV高清无码| 国产真实乱了全集磁力| 亚洲成a人v欧美综合天堂麻豆| baoyu122.永久免费视频| 老司机精品导航| 日本一在线中文字幕天堂| 嘟嘟嘟www在线观看免费高清| 一级做a爰片久久毛片唾| 美女一区二区三区| 无码精品国产va在线观看dvd| 国产成人AV一区二区三区无码 | 成人免费一区二区三区视频| 国产女人18毛片水真多18精品| 久久五月天婷婷| 韩国特黄特色a大片免费| 成人性生免费视频| 囯产精品一品二区三区| 久久99精品久久久久久久久久| 精品午夜福利在线观看|